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Abstract-The generalized heat balance equation for steady state heat transfer in heat-generating 
fluids is integrated for laminar flow of a power law non-Newtonian fluid in cylindrical tubes with 
circular sections, when volumetric heat generation rate depends linearly on local temperature. 

The boundary conditions considered are those of arbitrary tem~rature distribution in the inlet 
section and constant temperature on the lateral surface of the fluid. 

NOMENCLATURE 

constant; 
specific heat ; 
specific heat at constant pressure; 
specific heat at constant volume: 

substantial derivative ; 

modified Bessel function of the first 
kind of order zero; 

1 
= +I; 

n 

constant of power law ; 
Nusselt number; 
pressure; 
heat generation rate per unit volume; 
specific heat generation rate; 
cylindrical radial co-ordinate; 
tube radius; 
time; 
fluid tem~rature; 
temperature at inlet section centre; 
onset temperature of heat generation ; 
wall temperature; 
veIocity vector; 
maximum velocity; 
voiume ; 
cylindrical axial co-ordinate. 

Greek symbols 
an, constant ; 
13 ?I4 eigenvalue ; 
% dimensionless axial co-ordinate: 

0, dimensionless fluid temperature; 
0% dimensionless bulk temperature; 
0 max, dimensionless temperature at tube 

centre ; 
asymptotic dimensionless temperature 
atq=co; 
Z @ - 0,; 

dimensionless constant of heat genera- 
tion rate: 
heat conductivity; 
Bessel’s function of the first kind of 
order zero; 
heat flux ; 
dimensionless radial co-ordinate; 
fluid density; 
shear stress tensor; 
eigenfunction. 

INTRODIJCTION 

MANY problems about heat transfer in laminar 
flow of heat-generating fluids have been studied 
in recent years [l-21]. 

The volumetric rate of heat generation was as- 
sumed to be constant [I-3, 5, 6, 14, 16, 203 or a 
function of space variables [8, IO, I 1, 12, 15, 181. 
whereas some authors have considered directly 
the viscous dissipations and the expansion effect 
17, 9, 211. 

Topper [4] has obtained solutions for piston 
flow in pipes with circular cross sections, when 
the heat generation rate depends linearly on the 
local tem~rature. 

The authors of the present paper 1171 have 
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assumed a volumetric rate of heat generation 
expressed by the following relation: 

(c) The viscous dissipations are negligible 
vs. Q. 

Q = Q0 (T -- T,,) when T 3 To 
(1) 

Q==O when T < T, i 

and obtained the steady state temperature 
profiles for iaminar parabolic and piston flow 
in circular tubes. 

(d) Axial conduction of heat is negligible 
in comparison with convective transport. 

(e) The velocity profiles are fully developed. 
(f) Inlet and boundary conditions have 

cylindrical symmetry. 

Then equation (2), for steady state conditions, 
reduces to : 

Foraboschi and Cocchi [19] examined a 
particular case of transient conditions, with 
heat generation as in (1). 

The relation (1) may be viewed as an approxi- 
mation of the rate of some exothermic process 
increasing with temperature and having T, as 
onset temperature. In this paper the generaked 
heat balance equation is integrated for steady 
state heat transfer with arbitrary axially sym- 
metric temperature distribution at the intet 
section and constant temperature on the lateral 
surface of power law non-Newtonian fluid in 
laminar flow in cylindrical pipes with circular 
sections, assuming the following heat generation 
rate : 

Q = po (T -- 7-u). (I’) 

When the inlet wall temperatures are greater 
than or equal to T,, the relation (1’) is equivalent 
to (1). 

where cr = c.~ = c. 
In fully developed Iaminar power Aow in 

cylindrical tubes with circular sections the 
velocity distribution is: 

The considered boundary conditions are: 

T = Tzf(r), z = 0 0 5; i’ :-; i’,* 1 
i (3 

T = 7-w. z>o I’ ---. I’() J 

wheref(0) I- I, and Tt and Tgu are constants. 
Substituting (4) into (3) and introducing the 

following dimensionless variables: 

The radial, axial and mean temperature 
profiles and the Nusselt numbers, calculated for we obtain : 

some values of dimensionless parameters and 
for constant inlet temperature, are reported. 

ANALYTKAL STATEMENT OF THE PROBLEM 
in which: 

The energy equation, neglecting form of 
energy and energy transport such as electro- 
ma~etic, nuclear and radiative, is: is the dimensionless parameter characterizing 

the particular heat generation rate. 
The dimensionless boundary conditions are : 

where Q is the heat generation rate per unit 
volume. 

The following assumptions are made: 

(a) Fourier’s law is valid. 
(b) The physical properties of the fluid 

(p, cv, X) are constant. 

Equation (7) with boundary conditions (9) 
can be solved by stating: 

0 (rl. 0 = @,14) + 0, (% E) (10) 

(3) 

(7) 

. . . -. _ ,-, 
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where 0, is the solution of the following ordinary 
differential equation: 

with the boundary conditions: 

O,(l) = 0, 7 

($)[--, = 0 ] (12) 
.(the second one being a consequence of cylin- 
drical symmetry of temperature distribution), 
and 0, is the solution of the partial differential 
equation (7) with the following conditions: 

0, (7, 1) = 0 

0, (0, 5) = @i (6) - 0, (5) 1 ) (, 3) 

‘a@, 0 af = 0. 
I,’ 0 

Equation (11) is a Bessel’s equation of order 
zero with parameter rl, and its solution with 
boundary conditions (12) is: 

(14) 

It is interesting to observe that if fl = 2.4048, 
then 0 becomes cc, because Jo (2.4048) = 0. 

Equation (13) may be solved by the method 
of separation of variables. 

The solution is : 

0, = Cn as exp (- Pi 7) ul, (0 (15) 

where & are the eigenvalues and Yn the eigen- 
functions of the following Sturm-Liouville 
equation : 

-t [A2 + s;5 (1 - P)] Y, = 0 

As the eigenfunctions Ym form a system 
orthogonal with respect to the weight function 

E (1 - tm), then the constants an that satisfy 
the second boundary condition (I 3) are : 

(17) 

The eigenfunction Y, may be found as power 
series : 

following the method of Frobenius. A simple 
solution is obtained for piston flow; indeed in 
this case n1 = cc, and the equation (16) reduces 
to a Bessel’s equation of order zero with para- 
mater z/(f12 + /32). Then we obtain: 

Y, z-z Jr) [,$ \,‘(fl” + &)I (19) 

and the eigenvalues are determined by the 
following equation : 

Jo [v’V2 + rS@l = 0. (20) 
When m is integral it is easily found: 

aign = : I2 [St, a6-(nL+2);n --- (A2 + Pi> ai-2,J (21) 

where aoin may be arbitrarily chosen to be unity 
and alin must be zero to satisfy the condition 
at [ = 0. 

When nr is even, every coefficient ai is equal 
to 0 whenever i is odd, so (19) and (20) become: 

o...ao 
Y,u,, = Ct a2ikn t2f (22) 

1 
a2iilL = -~ : - [isi a-hi 2jin 

(2l)2 
- (A” T #I a2i--2J. 

(23) 

When m is not integral it is necessary to 
expand trn in power series of 5, so we may state: 

and then determine the coefficients ai. 
In every case considered the eigenvalues are 

determined by the equation: 
0 . ..m 
xi ai = 0 (24) 
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following from (I 8) and the boundary condition eigenfunctions have been calculated for the 
u/, (1) = 0. following values of A and m: 

In the ease of negative heat generation 2 
(Q@ < O), the equation (7) becomes 4 f71 “;; 

(7’) 
6 

[ % 

in which 

equation (11) thus becomes a lnodified Bessel 
equation of order zero, and with the boundary 
conditions (12), its solution is 

(14’) 

Because 0 < 5 :,c: 1 and I, is a positive and 
increasing function of 6, we obtain: 

0, (6) ;: 0,. 

The genera1 solution is easily obtained by 
substituting -A2 to +A* wherever -{-A2 occurs. 

and for constant inlet temperature cri. 
The first three consents alb have been calcu- 

lated with (17) by numerical integration, con- 
sidering two values of wall temperature, 1 and 3. 

The calculated ejgenvalues & and constants 
a, are collected in Table 1, while values of 
eigenfunctions at various value of the dimension- 
less radius 5 are given in Table 2. 

The axial temperature profiles calculated for 
the previously indicated values of parameters 
are shown in Figs. 1, 2, 3 and 4; some of the 
most interesting radial temperature profiles are 
shown in Figs. 5 and 6. 

The dimensionless mean bulk temperature of 
fluid in any .given section of the pipe may be 
calculated by using the following integral: 

ojs _ 2 h -t 2) I 
NUM~ICAL EXAMPLES m -s 

8 (I -. 6”) f: dE (25) 

To illustrate the previous solution of general- 
0 

iced Fourier’s equation and to show the influence and the buik temperature profiles are shown in 
of various parameter, the first eigenvalues and Figs. 7, 8, 9 and IO. 

FIG. 1. Axial dimensio~iess tem~ratlire profdes for m =: 2. 



Table 1 
.z= -.---~- _I__--.---___-~ _-__ 

A=1 

WI a0 a, 02 

IL 81 I% Bo 
@.= I Q.= 3 Q.= 1 a,=3 8. = 1 e. = 3 

-- 
2 2.46 -0.3575 -3.9664 6.57 0.0933 1.7297 10.60 -0Q978 -Ml27 1,51 
4 2.28 -0.3396 -4.0345 5.94 oG437 1.8522 9.55 -0*0175 -1.316q 1.40 
6 2.23 -0.3397 -4~0809 5.71 / 0.0424 I .9363 9.18 -0~0115 - 1.3&e 1-36 
m 2.19 I -0.3348 -4.2090 5.43 0.0349 2.23 13 8.59 -0.0114 - I .7376 I.34 

P 

--. 

0 

8:: 

;:; 

0,5 
0.6 
0*7 
0*8 
0.9 
1.0 

=L: 

I 

__ 

m=2 

A=1 A=2 

0.91s25 09844 1 

0.9313 0.9385 
0.8503 0%49 
0.7455 0.7677 
0.6239 0.6521 
0.4932 0.5238 
0.3606 0.3891 
0.2318 0.2537 
O*llIl 0.1227 

0 0 

m=4 

A=1 A=2 

1 1 
0.9845 09852 
0.9388 0.9414 
0.8649 0.8707 
0.7667 0.7761 
0649 1 0.6622 
0.5 184 0.5341 
0.3814 0.3978 
0,245 1 0.2595 
0.1153 0.1249 

0 0 

E2=6 

I=I A=2 

0.91851 
1 

0.9854 
0.9409 0.9423 
0.8696 0.8726 
0.7742 0.7793 

0.:929 O&960 0.9113 1 0.9126 1 

0.6081 06186 0.6688 0.6734 
0.2393 0,2561 / 0.3361 0.3443 

-0.1039 -0.0861 -0m13 0.0083 
06592 0.6664 -0.3382 -0.3257 - 0,263 1 -0.2551 
0.5299 05390 -0.4311 -0.4272 -@3983 -0.3948 
0.3925 0.4028 -0.3989 -0*4025 -0.3998 -0.4013 
0.2537 0.2636 -0.2867 -0.2932 -0.2998 -0.3043 
0.1201 01275 -0.1425 -0.1470 -0~1505 -0.1542 

0 0 0 0 0 0 

Table 2 
-~..- - -______ B 

yz 
I 

‘-?I=2 m=4 

A=1 A=2 A=1 A=2 

v v --. __-.- 

f. p. 318 H.M. 



0, = 1 8. = 3 

-36330 -13.7718 
-3.6122 - 13.8235 
- 3.601 I - 13.8563 
-3.6013 - 14.0200 

81 

6.23 
5.63 
5.41 
5.14 

e. = 1 0, = 3 

0.2197 2.1491 
0.1960 2.2645 
0.1731 2.3057 
0.1525 2.5793 

10.38 -0.0953 - 1.3924 
9.35 - 0.0796 - 1.4729 
8.99 - oa630 - 1.5034 
8.42 - 0.0269 - 1.7215 

e. = 1 0, = 3 

m=6 m=2 m=4 m = 6 

A=1 A=2 A=1 A=2 A=1 A=2 . 

1 1 
0.1823 0.7838 
0.2695 0.2737 

-0.2173 -0.2131 
-0.4044 - 0.4044 
-0.2491 -0.2542 

0.0618 0.0553 
0.2854 0.2821 
0.3058 0.3068 
0. I728 0.1750 

0 0 

A=1 A=2 

1 1 
0.9175 0.9184 
0.6903 0.6936 
0.3738 0.3797 
0.0436 0.0509 

-0.2253 -0.2189 
-0.3791 -0.3759 
-0.3998 -04010 
-0.3096 -0.3142 
-0.1581 -0.1632 

0 0 

1 1 
0.7367 0.7401 
0.1554 0.1638 

-0.3131 - 0.3068 
-0.3932 -0.3961 
-0.1461 -0.1566 

0.1662 0.1562 
0.3304 0.3270 
0.3037 0.3060 
0.1620 0.1656 

0 0 

_- 
1 

07979 
0.3126 

-0.1729 
-0.3991 
-0.2930 

00329 
0.2529 
0.3055 
0.1807 

0 

1 
0.7993 
0.3165 

-0.1686 
-0.3983 
-0.2973 

oaO39 
0.2487 
0.3066 
0.1851 

0 
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FIG. 2. Axial dimensionless temperature profiles for m = 4. 
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FIG. 3. Axial dimensionless temperature profiles for m = 6. 
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0105 040 0.20 OTO I 2 
T 5 

FK. 4. Axial dimensionless temperature profiles for ,w 7 

FIG. 5. Radial dimensionless temperature profiles at FIG. 6. Radial dimensionless temperature profiles ful 
17 = 0.3, for A L 2 and O,,, -- 3. .,I - I and O,,. = 3. 

The heat transfer at the wall has been calcu- 
lated as Nusseft numbers: 

cm 
and plotted vs. n in Figs. I I, 12, 13 and 14. 

The plots of Nusselt numbers show that, 
when 0, = 3, initially NU decreases and becomes 
negative, finally attaining a value of -co ; then 
it changes suddenly becoming i-co, and then 

decreases quickly reaching values near the 
asymptote. 

This behaviour is easily explained by observing 
in the plots of bulk and radial temperatures: 
(a) that for 0, r= 3, OB becomes greater than 
0, for those values of 7 which are higher than 
those where : 
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o*o!i 0.10 0.20 0.50 1 2 
5 5 

FIG. 7. Dimensionless bulk temperature profiles for m = 2. 
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FIG. 8. Dimensionless bulk temperature profiles for m = 4. 
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FIG. 9. Dimensionless bulk temperature profiles for m = 6. 



322 FRANC0 P. PORABOSCHI and IGINIO DI FEDERICO 

fU 

08 

I I I,,, I 
o:us u%l two cm? 

I IJ 
1 2 

"1 5 

FIG. 10. Dimensionless bulk temperature profiles for n? = a. 
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FIG. 11. Nusselt’s numbers for A = 1 and Qt, = 1. 

becomes negative, and (b) that when: 

CONCLUSION 

The results of this investigation show that the 
generalized heat balance equation for steady 
state heat transfer in laminar power flow of 
heat-gene~ting fluids may be integrated when 

the volumetric heat generation rate depends 
linearly on temperature, superimposing two 
solutions. 

The ftrst of these is a function of dimensionless 
radius alone and is the asymptotic temperature 
reached by the fluid at infinite distance from the 
inlet section: it is independent of velocity profile 
and of temperature distribution in the inlet 
section and depends on A and wall temperature. 
The second one, instead, depends on inlet 
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FIG. 12. Nusselt’s numbers for A = 2 and @,, = 1. 

-2 
0.1 I.0 

? lo 

FEG. 13. Nusselt’s numbers for n = 1 and 8, = 3. 

I I I I IIIII 1 1 1 

-2 
042 0.70 I.0 

FIG. 14. Nussek’s numbers for A = 2 and 8, = 3. 
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temperature and velocity profiles as well as on 
/1 and wall temperature. 

An interesting result is that for every m it is lo* 
impossible to have steady state conditions when 
il 2 2.4048. 11. 

Instead, when fl < 24048, steady state con- 
ditions are reached such that for small values of 
the axial dimensionless co-ordinate, tempera- 

,2 
’ 

tures and Nusselt numbers differ very little from 
asymptotic values. In the numerical examples 
discussed this is verified for y > 1. 13. 
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R&sum&On a int6gr6 I’tquation g&+ralis&. du bilan de chaleur pour un transfert de chaleur en 
rkgime permanent dans des fluides avec production interne de chaleur lorsqu’on a un &oulement 
laminaire dans des tubes ~ylindriqu~ B section circulaire d’un fluide non Newtonien ob&issant li une loi 
en puissance, la vitesse de production volumique de chaleur d&pendant lin~airement de la temp&ature 
locale. 

Les conditions aux limites consid&r&s sont celles d’une distribution de temptrature arbitraire dans 
la section d’entrk et d’une temperature uniforme sur la surface lat6rale du fluide. 

Zasammenfassung-Die allgemeine WHrmebilanzgleichung fiir den stationsfen Wirmeiibergang in 
Medien mit W~rmequellen wird integriert fiir eine nicht-Newtonsche Fliissigkeit, die einem Potenz- 
gesetz gehorcht und laminar in zylindrischen Rohren mit Kreisque~chnitt stramt. Die volumetrische 
Wsrmeerzeugung hlngt linear von der brtlichen Temperatur ab. 

Als Grenzbedingungen wurden beliebige Temperaturverteilung im Eintrittsquerschnitt und kon- 
stante Temperatur an der begrenzenden Oberfliiche der Fliissigkeit zugrundegelegt. 
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l~HHOT~qEi$I-npOHHTerpllposaH0 0606ueHHOe ypaBHeH&ie TeIlJIOBOrO 6aJIaHCa AJIri CJIytIaR 

CTaI(Z4OHapHOrO TeIIJIOO6MeHa B HeHbIOTOHOBCKkiX reHepHpylOIUIIX TeIIJIO XKIIAKOCTfIX IIplI &IX 

naMHHapHOM TeqeHIlH B ~IlJIIfHApW'eCKllX KpyrJIbIX Tpy6ax. AeJIaJIElCb AOIIyWeHEWI 0 TOM, 

'IT0 ?iUIAHOCTb IIOJJYllHFIeTCFI CTeIIeHHOMy peOJIOrWieCKOMy ZaHOHy, a TaIEH(e 0 JIHHeirHOil 

:IaRIICMMOCTLl 06%eMHOfi CKOpOCTPl 06pa8OBaHnR TeIIJIa OT JIOriaJIbHOik TeMIIepaTypbI. 

Pacc3iaTpaBaeMbIe rpaHmHbIe ycj~o~m mmo9amT B ce6H npomBonbHoe pacnpe;le.zemw 

Te\!llepaT~phI DO BXOAHOM Ce'leHMII II ee IIOCTOFIHCTRO Eta C,OIiOROti IIOHepxIIOt'TII Tp?'6bI. 


